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TEMPERATURE AND HEAT-FLUX L)ISTRIWTIONS
IN A STRIP-HEATED COMPOSITE SLA13*

by

G. F. Jones
Solar Programs

Advanced Engineering Technology
Los Alamos National Laboratory
Los Alamos, New Mexico 87545

A13STf?ACT

The steady temperature and heat-flux distributions for a
composite slab consisting of a strip-heated, large-conductivityfin
in intimate contact with a small-conductivity,convectivcly cooled
substrate are obtained. Such a problem has application to the strip
heating of process equipment and laboratory experiments wnere uniform
thermtilconditions are desired and where the conductivity of the
substrate is small. Analytical methods are used to obtain
closed-form solutions for the local temperature and heat flux for the
full, two-dimensional problem and for the bounding case of no
transverse conduction within the substrate. A design procedure to
determine the strip-heater spacing necessary for a prescribed maximum
variation in heiitflux at the connectively cooled surface is
presented. An application example is given and the results
discussed. Expressions for the steady temperature and heat flux are
also obtained for the limiting cases of infinite heat transfer
coefficient and zero-thickness substrate.

lNTROOUCTION

This paper concerns the problem of predicting the steady temperature and

heat-flux distribution in a corrrposit.eslab consisting of two dissimilar

materials in intimate contact with each other, We material, of large

conductivity, is he~tcd on one side by equally spaced strips and the other

miiterial,which has a SIIM1lcmducttvity, is cooled on the opposite side by

convection to a fluid whose temperature is constant over the uistance between

the strips. The materials of large and small conductivity materials are

ret’erredto as the fin and the sutrstrdte,respectively. Such a problem has

application to the strip-heating of process equipment and Iirboratory
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experiments where uniform or near-uniform temperat~res or he~t fluxes art!

required.* For the situation where the conductivity of the substrate is small

(such as for glass or plastic materials), a large number of closely spaced

strip heaters would be necessary to achieve uniformity. To reduce both the

number and cost for such heaters, a thin sheet of material having a larger

conductivity (a f~n) is placed between the heat sources and tilesubstraLe.

Accordingly, the flow -f heat is distributed evenly between more coarsely

spaced strips.

The problem of heat flow through a strip-heated single slab has been

solved previously by Van Sant (Ref. 2) for the temperature distribution in a

connectively cooled slab for constant heat flux and constant-temperature

strips and by Schmitz (Ref. 3) for the heat-flux distribution in a slab having

constant-temperaturestrips and cooled by a constant-temperature opposite side.

In this paper, a closed-form analytical solution is obtained from the

simultaneous solution of the steady energy equation for both constituents of

the composite mediun. Although expressions for both local temperature and

local heat flux are obtained, primary focus will be on the heat flux

distribution at the connectively cooled side of the slab, this being the side

over which uniformity is desired. A design procedure to determine the

strip-h~ater spacing necessary for a prescribed maximum variation in heat

flux, C, at this surface is presented. Graphs and formulae for c are

developed for the upper-bwnding case of no transverse conduction in the

substrate (a quasi two-dimensionalcase) and for the case where

two-dimensionalheat conduction effects are considered. Expressions for the

steady temperature and heat flux are also obtained for the limiting cases of

infinite heat trdl~sfercoefficient (constant-temperaturecooled surface) and

zero-thickness substrate. Finally, an application example is presented and

the results discussed.

ANALYSIS

The geometry for the problem at hand is showr~in Fib. 1. Thu strip

heater, whic$ runs perpendicular to the plane of the figure, is positioned

above the ftn In region OS x ~-t, wh~re t is the half width of the strip.

The heat-flow rate uvur this area per unit depth of the heater is Q’. in the

--------- ---- ----- -----

●Processes involving natural convectiurl,fur Instjancu,are sunsitivu IN thu
imposed ttlerlllalm-buunllaryCorlditiuns aridmay nuce%sitot~ very ui~ifurmhounddry
heat fluxes or tempcrdtures (Kef. 1).
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Fig. 1. Problem geometry.

region t ~ x ~ g, the fin is insulated on top. -

and x - I are lines of symnetry, thus making the

he side boundar’

spacing between

centerlines a distance 21. In additlcn to the previously mentioned assump-

es at x = O

strip-heater

tions, we further impose the usual condition that d/!?<< 1 so that conduction

in the fin In the y direction may be :umped. The steady, constant-property

energy equation and boundary condltiomfor the fln and substrate become

MO o~x~t , (la)

y-D

3Ts
kd$-

‘s ~ ■ 0

y- l.)

%
.O. g s

)( .(.) X.jl
(lC)

T(x ■ t+) = T(x E t-) ,



and

% .=,+=$I
B

x=t-

aT~

F

(id)

(2a)

(2b)

T~ (X,y = D) = T(x) ,

where the left-hand side of Eqs. (lc) and (id) refers to the temperature

distributionover OS X5 t and the right-hand side refers to that over t ~ x

: J?..By Imposing Eqs. (id) and (Zd), temperature and heat flux continuity

between the two fin regions and between the fin and substrate are ensured.

Such conditions :Itistalways be satisfied In conjugate problems, of which this

is one.

The governin~ equations and boundary conditions are nondimensionalized by

(2C)

(Zd)

(3)

where lJiis the Uiot nlanber, Eqs. (1) m.1 (2) becume



d(ll = y) a ~(n = y)

‘5”1

=0
1

n-l

B

()~ll~v , (4a)

(4C)

(4d)

(5a)

(5b)

d~ (n, c - 1] ~ d(n) ,

where the smc r~strictions imposed on Eqs. (lc) and (lcl)are dpplied to Eqs.

(4c) dnd (4d).

The tradlttonal separation-of-variablesmethod of solution falls for

the dlwe system becduse the bounddry condition dt f+. 1 lEq. (bil)jis m

Ij

(SC)

(M)



as-yet undetermined function cf $ and thus, #s, this being a direct

consequence of the conjugate nature of the problem. In addition, because p

is small,* Eq. (5a) is “stiff” in the n direction, and attempts at

conventional numerical methods of solution also fail because Eq. (5b) cannot

be satisfied. It Is because of the diminutive nature of IJthat a

perturbation method of solution (Ref. 3) 1S attempted here using IJ2as the

pert.!rbation parameter.

We seek a solution, 4s, in the form

Combining Eqs. (6) and (5a) and equating the coefficients of the different

powers of ~, we obtain

Integrating Eq. (7a) and arp”

zeroth-order solution as

ylng Iiqs. (5c) and (5d), we obtain the

.

(b)

(7a)

(7t))

(8)

—-— .--.--— ———-

●ln the physical problem, we attempt to make flas lar~e as possible by
ensuring thermal uniformity by adding a Iarye-conductivity fin at the top of
d low-conductivity substrdtf’. For all cases of practical corlcern, !Jmay he
m~de large enouy;] so that Di~. :P << 1.
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Combining Eqs. (8) and (7D), integrating. applying Eqs. (5c) and (5d), and
rearranging we produce the following from Eq. (6):

( )f@.HLl+lQ
aQ (1 + tii ,g) 2(1 + Bi) an

(9)

which satisfies Eq. (5D) because of Eq. (4c). In the limit as B2 ● O, Eq.
(9) reduces to Eq. (8), as we expect.

The fin temperature d(n) Is obtained next by combining Eq. (9) and Eqs.

(4a) and (4b) and applying Eq. (4d). First, the function a~s~a~

is evaluated from Eq. (9) as

where

+4 g*=ABI1+

(lOa)

(lOb)

(1OC)

(ml)

Cornbir]i;,JEqs. (4a) ~nd (4b) and Eq. (lOa) we obtain

7



ln2 ht2/kd
‘~ ‘

(ha)

(llb)

(llC)

(lld)

and we further note that m Is “independentof the fin half-length, k.

Eqs. (ha) and (llb) are nw solved and the constants of integration

evaluated by Eqs. (4c) and (4d). The resulting distribution is

‘(”)- * 1 - ,sinhp(l - Y) cosh pn

slnh p

d(n) - y ‘;nh PY Co:h P(1 - ~)
m~(l+u)sinhp

Tne temperature distribution In the substrate Is determined from Eq.

(9), #(n) and ~2d/~n2 having been evdluated from Eqs. (12), Thus,

(13a)



6$ g)
=~Q+Bi E)sinh PI

1-

cosh p(l - n) ~

M2V (1 + Bi) sinh p

(Ayz + Y2/m2)-l
[6-NW (:(:,;:) 1)+

(13b)

2u&(w-j\ Ys.,1.

Temperature continuity at the surface (n = y, g) in Eqs. (13) is guaranteed

because Eqs. (13) satisfy Eq. (4d) at E z 1. Also, Eoz. (13) satisfy Eq.

(5d) to each order in p.

A dimensionless heat flux at the surface ~ =0 is defined by

and with Eqst

G2D(n) -

d2D(n) -

(13), this becomes

~
I 1 sinh p(l - Y)

[

C,jsh p~ ~ + 3+81-— II(14a)
6(1 + Bi)~A+ (t/Dm)ZJY

I
sinh p

sinh PY cosh p(l - rI)

y sinh p
1+

3+~j

6(1 ‘BI)I,A+ (t/Dm)7J
1

The subscripts 211in Eqs. (14) designate th~t the effect of n-direction

(14b)

conduction within the substrate was considered in th~ development of the

expressions.
9



By inspecting Eqs. (llc) and (14), we note that the heat flux depends

upon four parameters: Bi, t/D, m, and Y. Hwever, in the limit as M* ● o,
P* ● m2/~2 and the term within the large square brackets in Eqs. (14)

becomesunity,eliminating the dependence upon Bi and t/D and simplifying the

functional representation of the heat flux. In this limit, the effect of

heat conduction In the ~ direction within the substrate is neglected and the

analysis becomes quasi two dimensional. Because this component of conduction

tends to make the temperature nmre uniform at the connectively cooled

surface, the quasi two-dimensional case thus represents an upper bound on the

nonuniformity of heat flux at that surface. This result is a direct

consequence of t~.econstant heat-transfer coefficient and coolant temperature

assumed for this analysis.

For the quasi two-dimensional case, the heat flux at the surface,

‘5= O, becomes

I -1_- 1 cosh my-in
$D(n) =k 1 -

sinh m(y
--%

Y sinh mY-

iqo(d-’ , sin,:*sinh incosh m y~n~l , (15b)

where the subscript qD designates the quasi two-dimensional approximation.

To assess the degree of uniformity of heat flux over the surface E w O,

we define

c=

which iS

(16)

the difference In heat flux between the locations n = (Jand n = 1 at

~ =0, expressed as a fraction of that at n = O and ~ = O. In particular,

for the tw-dimensional (2D) and quasi two-dimensional (qU) cases, Eq. (16)

l;~comes

‘w “ 1- miT%%hTRT‘ (17d)
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where

G=l+
3+Bi

, and
6(1 +Bi)[A+ (t/Dm)2]

sinh m
‘qD=~-— P

sinh my-l - sinh m(Y-l - 1)

respectively.

RESULTS

The heat-flux distribution from Eqs. (15) are shown in Fig. 2 for

several m ‘andy combinations. He note thdt the heat flux becomes more

““FT’ZET’’’’’:’’:’-

D.!iO

E, Gtklu* 4~+-e---+ —- ~—fi--+- -.-+--+- --l---+ -- +---o-- +---
02 0,3 lil.~ kl.!i Uti M7 MM fl,rJ

n

Fiy. 2. Dimensionless quasi two-dimensional heat-flux dlstribut.ion at ( ●

0 for various canbinations of m and w parameters.
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uniform with increased ~ and decreased m. For a fixed Bi and t, this implies

an increased fin conductance, kd, and a decreased fin half-length, L,

respectively. Recalling fundamental fin theory (Ref. 5), both these effects

are seer,to cause an Increased uniformity in the heat-flux distribution

within the fin, thus verifying the trends indicated in Fig. 2.

The figure-of~rit variable cqD from Eq. (17b) is shown in Fig. 3

fcr a wide range of m values. Just as in Fig. 2, a decrease in the

uniformity of heat flux at the surface ~ = O for increased m values is

evident for fixed values of y. This figure serves as the basis for the

strip-heater-designprocedure described in the ne:t section.

‘he ‘ari;b’e ’20 from Eq. (17a) is shown in Fig. 4 for several II/t

andA2+ (t/Din) combinations and for a fixed value of Bi = 15. The latter

value corresponds approximately to natural convective flow of water over a

E

E

kl

Y

Fig, 3, Figure-of-merit variable C~D from the quasi two-dimensional
model for various m parwneter values.
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mu L

H-H-H-t+ F} b-l+H-t-t+*t-4- l—H+-+-Ft+t+t+*

Curve No. w A+(t/oln)~

1.00 1500
; 1.00 1000
3 1.00 500
4 0.50 1500

0.50 1000
: 0.50 5al

1.00 100
: 1.00
9 0.50 1::

10 0.50 50 1

-.
H.ti U.1 M.i! V.3 ~,11 Ids H ti M-1 F1. tl ~,g I.ti

Y

Fig. 4. Figure-of-merit variable c D fran Wo-dimnsional mdel for
3various D/t and A + (t/Din) parameter values. Bi - 15.

moderately neated 2.54-cm- (l-in.) thick acrylic plate. For values of

(t/l)m)zS 15 and BI 5 25, C2D is fairly insensitive to 13i,wh”

fioteby Inspectlnq Eqs. (lOd) and (14). For all other cases,
G2D should be calculated frcxn Ea. (17a).

‘he ‘atio C2Dto CqO as a function of Y is p~esented in F’
~

ch we

g. 5 for

several D/t and A + (t/l)m)ccombinations and for Bi = 15, Ordinate values

smaller than or equal to unity verify that c ~D IS bounded by CqD from

above as discussed before the development of Eqs. (14). In addition, the

effect of n-direction conduction on the heat flux ~t the surface g ■ O may be

assessed from this figure. In particular, for Bi ~ 15, D/t~O.5(.), y~O.40,

and m < (),23,the value of cqD represents less than an 8% overestimate in

heat-flux variation at the surface E = O, Thus, in many cases, only the quasi

two-dimensionalresults shown in Ftg. 2 need be used to obtain reasonably good

estimates of heat-flux Variations in strip-heated, canposite-slab systems.

13



1.00

0.9s” “

“q p
0.90 ““

9.ES -“

D/t,A+(t/LMn)tvalues
a,efa~~+ ::::::::::~,:::~ :-’~’~

0.0 0,1 0.2 U.3 E.q 0.s

Y

Fig. 5. Ratio of two-dimensional to qu SI two-dimensional figures-of-merit
!for various D/t and A + (t/Din) parameter values. Bi = 15.

DESIGN METHWNILOGY

liepresent the following method to estimate strip-heater spacing for a

prescribed maximum variation in heat flux over the connectively cooled side of

a strip-heated composite sl~b.

1.

2.

3.

4.

b.

Fran the problem specifications, obtain values fc”r h, 0. ks, t, d,
and k,

Calculate the followlng variables from the equation numbers shown
after them in parentheses: Bi (3), A (lOd), m (lld), and G (17a).

Choose a maximum allowable ValUe of c D (a value of 1).OSor
!smaller may be a good value in most c ses).

Enter the value of m and G D in Fig, 3 and estimate y.
Alternatively, Eq. (17b) m~y be used in place of Fig. 3.

Cstimate half-spacing, g, between two adjacent strip kcaters by E =
07.

14



6. Estimate p from y and Eq. (llc).

7. Fr.m Eq. (17a), estimate ~2D [Or alternatively, if, for the
problem under consideration, 13i= 15 and the ccmnbination of t/D and
A + (tlDm)2 aopear on Fig. 4, the figure may be used in place of
Eq. (17a)]. if C?D is much smaller than c D because of

!significant two-dimensional effects, recal ulate c
!?

using a
slightly smaller value of y than that obtained in ep 4. Steps 5
through 7 may be repeated until the prescribed value of c2D is
obtained.

If desired, this procedure may be repeated choosing different values of t, d,

and k to optimize the strip-heated system with respect to cost, weight,

material availability, etc. In addition, because c parameters are obtained

from closed-form functions (and not tables of nunbers or graphs fran numerical

simulations), they, along with the

computer programed and the design

manner.

APPLICATION EXAMPLE

Consider the followir.gexample

other fornulae needed, may be easily

acd optimization carried out in this

problem. The numbers on the f.r left

correspond to the steps frcnnthe design procedure described in the last

section.

1. h = 85.17 W/m2 K

D= 1.27 cm

t. 1,27 cm

d. 0.318 cm

k = 382.55 W/mK

ks - 0.346 M/mK

Bi =~. 3.125
s

= 0.573

(15 Btu/h ft2 “F)

(0.5 in.)

(0.5 in.)

(0.125 in.)

(221 Btu/h ft “F)

(0.2 tItu/hft “F)

15



[1ht2/kl
1/2

‘-m = 0.052

3.

4.

5.

60

7.

G.1+
~+Bi

= 1.001
6(1 +BI)[A+ (t/Dm)]2

A+ (t/Dm)2 = 370.39 .

Choose cqo -0.05 .

From Fig. 3, y - 0.15 (for this value Of Y, Eq. (17b) giVeS CqD M

0.049).

~. t/y _ 1.27cm/O.15 = 8.467 cm.

[

p - -1 1’2-0.350 .
A+

C2D=l -

(t/Din)’]

G sirihPY
sinh p - slnh P(1 - Y)

=0.04b .

We note that two-dimensional effects reduce the upper-bound estimate of c by

about 7%, If the above results are acceptable, a 4.6% variation in heat flux

across the surface at E = O should be expected for this problem for a

centerline spacing between two adjacent strip heaters of 2 x 8.467 cm = 16.93

cm. The values of M and V2 here are O.150 and 0.022, respectively.

LIMITING CASES OF INFINITE Bi AND ZERO-THICKNESS SUBSTRATE

In this section we consider the two llmlting cases of infinite 13iand

zero-thicknesssubstrate, The former corresponds to a constant temperature

at the co~led surface, whereas the latter is for a single material In which

~-directionconduction may be lumped.

16



For Bi z-, Eqs. (10) and (11) become

A = A(1 + P2)/MV , (18a)

B m ~p/3v , (18b)

A=l/3, (18c)

P* = 2A(1 + M2)/v(ArJ+ 3V) , (19a)

m2 = t2ks/Okd . (lYb)

The temperature distrlhution in the fln [Eqs. (12)] remains unchanged

except for the change in m and p given by Eqs. (19). The temperature

dlstrlbutlon In the substrate becanes

I6Jn, c) + 1- ““hp‘1- ‘) cosh pn

mv slnh p I
[l-&]

d#r, ~) - J-sh ‘(1- ‘1~
m v slnh p (20b)

[1-* I
All Oth~F equations remain the same except that the termwithln the

large brackets In Iiqs.(14) becancs

which Is also the IIW cxprussiorlfor G In !iq,(17a).

17



For the case of a zero-thickness substrate, 1,1● 0 and Eqs. (11) become

m2 _ ht2/kd , (21a)

p=m/Y . (21b)

The temperature distribution within the fin LEqs. (12)] ~implifies to

d(n) +
mu

sinh m(y-11- - 1) cosh mY-in

sinh my-l

sinh m cosh -1 ~
d(n) = y - n)

m2 v sinh m Y-l

The term within the large brackets in Eqs. (14) reduces to unity for this

case as does the expression for G in Eq. (17A). Thus, we note that Eqs. (14)

and (15) and Eqs. (17a) and (17b) become the same for the limiting case of

M = O as we expect because of the absence of ~y two-dimensional conduction

effects.

The design procedure described above and the graphical results may be

applied to both of these cases, wher

are used. obviously, Figs. 4 and 5

procedure), which accounts for mult’

within the composite slab, need not

zero-thickness substrate because no
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